

Carbohydrate Polymers 49 (2002) 509-513

Carbohydrate Polymers

www.elsevier.com/locate/carbpol

Thermogravimetric study of starch derivatives with amine/ammonium ion-exchanging groups in oxidative environment

Ivan Šimkovic^{a,*}, Katarína Csomorová^b

^aInstitute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84238 Bratislava, Slovakia ^bPolymer Institute, Slovak Academy of Sciences, 8426 Bratislava, Slovakia

Accepted 2 November 2001

Abstract

The amine/ammonium materials were prepared by cross-linking of starch (S) with epichlorohydrin (E \rightarrow SE) in the presence of ammonia (A \rightarrow SEA) or choline (C \rightarrow SEC-HO $^-$) or with 1,3-bis-(3-chloro-2-hydroxypropyl)imidazolium hydrogensulphate (BCHIHS \rightarrow SHI–HO $^-$) and transfered into the acid/salt forms with HCl (SEA-HCl, SEC-Cl $^-$, or SHI–Cl $^-$), H₂SO₄ (SEA-H₂SO₄, SEC-HSO $_4^-$, or SHI–HSO $_4^-$), and H₃PO₄ (SEA-H₃PO₄, SEC-H₂PO $_4^-$, or SHI–H₂PO $_4^-$) and analyzed with thermogravimetry (TG) under dynamic and isothermal conditions in nitrogen or oxygen environment. According to the values of thermooxidation maxima (TM) calculated from the maximal difference of measured residues on the dynamic TG curves run in nitrogen and oxygen environments the order of decreasing thermooxidation resistance is: S > SEA-H₃PO₄ > SHI-H₂PO $_4^-$ > SHI-HSO $_4^-$ > SEA-H₂SO₄ > SEC-HSO $_4^-$ > SEC-HO $_4^-$ > SEA-HCl > HCl-Cl $_4^-$ > SEC-Cl $_4^-$ > SHI-HO $_4^-$ > SEA > SEC-H₂PO $_4^-$ > SE. The first-order rate constants calculated by the linear regression method (regression coefficient R > 0.95) represented the initial rate constants for residue formation (R_1^-) and gasification (R_2^-). All the derivatives had greater values of rate constants than S and the R_2^- series about 1000 times greater than R_1^- s. The values obtained in nitrogen were smaller than those calculated from runs in oxygen environment with the exception of S. Most of the salt forms had greater values of R_2^- in oxygen environment. The activation energies (R_1^-) were usually greater in nitrogen than in oxygen as well as for residue formation than for gasification. The SHI–HO $_1^-$ sample had high R_2^- s and low R_2^- s in oxygen environment while for SHI–H₂SO $_4^-$ the opposite was true. This we consider as two extremes for labile and resistant samples for gasification. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Starch; Thermogravimetry; Cross-linking; Ion-exchangers; Thermooxidation; Residue; Gasification

1. Introduction

The cross-linking of starch using 1,3-bis(3-chloro-2-hydroxypropyl)imidazolium hydrogen sulfate or epichloro-hydrin (E) in the presence of NH₄OH or choline was studied with the goal to prepare water-insoluble materials with ion-exchanging properties (Šimkovic, Francis, & Reeves, 1997; Šimkovic, Hricovíni, & Sasinková, 2002; Šimkovic, Laszlo, & Thompson, 1996). These materials might find application as disposable traps for environmentally dangerous ions which might be preconcentrated by thermolysis of the polysaccharide component. The presence of oxygen enhances the process. That is why we have studied these derivatives with TG under inert and oxidative environment. The goal was to find out how the material behaves and what could be

E-mail address: chemsimk@savba.sk (I. Šimkovic).

0144-8617/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0144-8617(01)00364-2

learnt from calculated rate constants of residue formation/ charring and gasification. The samples were analyzed before on Py-GC/MS or TG/MS instruments under inert environment (Šimkovic et al., 1997; Šimkovic & Jakab, 2001). Now we have used different thermobalance and compared the results with data run on TG/MS and additionally studied the thermooxidation which was not possible on Py-GC/ MS or TG/MS instruments. The application of the linear regression method for the simultaneous calculation of rate constants of charring and gasification under oxidative conditions was used for the first time. The thermolysis and thermooxidation of quaternary ammonium groups introduced to cellulose and lignocellulosics was also studied by our group (Šimkovic, Antal, Balog, Košík, & Plaček, 1985a; Šimkovic, Antal, Csomorová, & Micko, 1989; Šimkovic, Antal, Mihálov, Königstein, & Micko, 1985b; Šimkovic, & Csomorová, 1998. The oxidative reactions on polysaccharides start below 300 °C and it was assumed that they are independent on the thermal degradation (Shafizadeh & Bradbury, 1979).

^{*} Corresponding author. Tel.: +421-7-594-10289; fax: +421-7-594-10222.

2. Experimental

Partially-hydrolyzed, water-soluble potato starch (S; ZŠ, Dolná Krupá, Slovakia; M = 19,060 Da, determined osmometrically); $[\alpha]_D^{20} = +154.0^\circ$ (c 1; H₂O) was used without further treatment. SE derivative was prepared by cross-linking S (1.62 g; 0.01 mol) with E (7.82 ml; 0.1 mol) in water (9 ml; 0.5 mol) and in the presence of NaOH (4 g; 0.1 mol) applying 24 h stirring at room temperature, dialysis, filtration and subsequent freeze drying [115% yield; N = 0%, C = 44.69%, H = 6.87%; DS (-CH₂CHOHCH₂-) = 0.01-0.81; DS (- $CH_2CHOHCH_2OH) = 0.83-2.25$]. Under the same conditions, but in the presence of NH₄OH (14.8 ml of 26% solution) SEA derivative {119% yield; N = 3.05%, C = 42.49%, H = 7.38%; DS (-CH₂CHOHCH₂OH) = 0.01, DS (- $CH_2CHOHCH_2NH_2) = 0.01-0.19$, DS (-CH₂CHOHCH₂- $NH-CH_2CHOHCH_2OH) = 0.25-0.53$, DS [-CH_2CHOH $CH_2-N(CH_2CHOHCH_2OH)_2 = 0.19-0.33$ was obtained. Part of SEA (0.25 g) was recycled with 5% HCl, H₂SO₄, or H₃PO₄ (100 ml) by stirring for 48 h at room temperature, subsequently washed with excess of deionized water and lyophilized. In this way SEA-HCl $\{80\% \text{ yield; Cl} = 4.17\%,$ N = 2.19%, C = 41.79%, H = 6.88%; DS [-CH₂CH $OHCH_2-(NH_2^+Cl^-)-CH_2CHOHCH_2OH] = 0.01-0.05, DS$ $[-CH_2CHOHCH_2NH_3^+Cl^-] = 0.01-0.05$, DS $[-CH_2CHOH$ $CH_2-(HN^+Cl^-)-(CH_2CHOHCH_2OH)_2] = 0.41-0.43,$ $(-CH_2CHOH-CH_2OH) = 0.01$; SEA-H₂SO₄ [59% yield; S = 3.66%, N = 2.27%, C = 39.03%, H = 6.75%; DS $(C_6H_{15}O_7NS) = 0.01-0.09$, DS $(C_3H_7O_2) = 0.01,$ $(C_3H_9O_4NS) = 0.01-0.07$, DS $(C_9H_{21}O_9NS) = 0.27-0.29$]; and $SEA-H_3PO_4$ [43% yield; P = 2.30%, N = 1.98%, C = 40.03%, H = 6.74%; DS $(C_6H_{15}O_7NP) = 0.01$, DS $(C_3H_7O_2) = 0.01$. DS $(C_3H_9O_4NP) = 0.01,$ $(C_9H_{21}O_9NP) = 0.29$] samples were obtained.

SEC-HO was prepared by mixing S (1.62 g; 0.01 mol) with water (3.6 ml; 0.2 mol) containing NaOH (4 g; 0.1 mol) and after homogenization choline chloride (0.698 g, 5 mmol; Aldrich) was added and subsequently 1.96 ml (0.025 mol) of E and stirred for 24 h at room temperature. After washing with deionzed water through fritted glass (G4) until neutral reaction on pH-paper, subsequently with ethanol and dried to constant weight in vacuo 1.98 g {122% yield; N = 1.25%, C = 43.87%, H = 7.40%; DS $(-CH_2CHOHCH_2-OCH_2CH_2^+N(CH_3)_3^-OH] = 0.37$, DS $(C_3H_7O_2) = 0.01-1.15$, DS $(C_3H_6O) = 0.01-0.65$ } of the derivative was obtained. Analogically as above parts of SEC-HO (0.25 g) was recycled to SEC-Cl [81%; N = 1.26%, C = 43.45%, H = 7.59%, Cl = 2.71%; DS $(C_8H_{19}O_2NCl) = 0.17-0.33$, DS $(C_3H_7O_2) = 0.01-0.07$, $(C_3H_6O) = 0.01-1.05$], SEC-HSO₄ (83%,N = 1.27%, C = 42.31%, H = 7.56%, S = 2.16%; DS $(C_8H_{19}O_6NS) = 0.11-0.16$, DS $(C_3H_7O_2) = 0.01-2.13$, DS $(C_3H_6O) = 0.01-1.21$ and SEC- $H_2PO_4^-$ [86%, N = 1.15%, C = 41.39%, H = 7.06%, P = 1.79%; DS O_6NP) = 0.23–0.25, DS $(C_3H_7O_2) = 0.01-1.43,$ $(C_3H_6O) = 0.01-1,41$] form.

SHI-HO was prepared by dissolving S (1.62 g, 0.01 mol) in water (6 ml, 0.333 mol) containing NaOH (0.952 g, 0.024 mol) and subsequent adding of BCHIHS (3.76 g, 0.01 mol) and stirring for 24 h at room temperature. Analogically as above the sample in 159% yield was obtained (N = 5.18%, C = 43.39%, H = 6.93%) and parts (0.25 g) were recycled to SHI-Cl⁻ form (58% yield, N = 4.61%, C = 40.37%, H = 6.18%, Cl = 3.57%; DS (- $CH_2CHOH-CH_2(N_2C_3H_3)(^-OH)CH_2CHOHCH_2-) = 0.01$ -0.73, DS ($-CH_2-CHOH-CH_2-(N_2C_3H_3)(^-OH)$ CH₂CH $OHCH_2OH) = 0.01-0.79$, SHI-H₂SO₄ salt N = 4.77%, C = 41.39%, H = 6.35%, S = 2.99%; DS $(C_9H_{15}O_6N_2S) = 0.07 - 0.25$, DS $(C_9H_{16}O_7N_2S) = 0.01 -$ 0.15] or $SHI-H_2PO_4^$ sample (65%, N = 4.60%,C = 38.24%H = 3.11%P = 2.33%; DS (C_9H_{16}) O_7N_2P) = 0.25-0.41, DS ($C_9H_{16}O_7N_2P$) = 0.01-0.15].

Thermogravimetry (TG) was run on Perkin-Elmer TGS-1 instrument in a static nitrogen or oxygen atmosphere using a heating rate 10 K/min for dynamic conditions. The sample weights were in 1 mg scale (Al pan), and the temperature values were calculated using ferromagnetic standards. In the case of isothermal measurements the temperature used was attained at a rate of 160 K/min. The rate constants of residue formation or charring (k_r) were calculated from the time dependency $ln(m_0/m_t) = f(t)$ using a linear regression method, where m_0 is the weight of the sample at the moment of reaching the desired temperature and m_t is the weight of the sample after time t of isothermal heating. The rate constants of gasification (k_g) were calculated from the $ln(1/m_0 - m_t) = f(t)$ function. Only values which were measured during the first 2 min of thermolysis were used. The rate constants fitted first-order rates (which was statistically evaluated by the regression coefficient R > 0.95) and were considered as the starting rates of residue formation or gasification.

The elemental analysis were run on a Fision EA-1108 instrument and the DS values were calculated as described earlier (Horton & Pardoe, 1970).

3. Results and discussion

The prepared samples could be divided into weakly basic amine derivatives cross-linked with E (SEA, SEA-HCI, SEA-H₂SO₄ and SEA-H₃PO₄) and strongly basic quaternary starches. First type of quaternized derivatives contains choline group cross-linked with E, which could be transfered to Cl⁻ (SEC-Cl⁻), H₂PO₄⁻ (SEC-H₂PO₄⁻), HSO₄⁻ (SEC-HSO₄) or HO⁻ form (SEC-HO⁻), while the second type derivative contains dihydroxypropylimidazolium group (SHI-Cl⁻, SHI-H₂PO₄⁻, SHI-HSO₄⁻ or SHI-HO⁻). In all cases part of the cross-linking agent is linked only monofunctionally as calculated from elemental analysis (see Section 2). The molar ratios of N to S or P or Cl were in the range of expected structural relations of the ion-exchanging groups and calculated DS values. For the

Table 1
Results of dynamic TG measurements of S and its derivatives in inert and oxidative environments (the residues of samples in wt%)

Sample	Environment	Temperature (°C)											
		105	250	275	300	325	350	375	400	425	450	475	500
S	Nitrogen	97	95	93	84	65	58	55	53	50	49	47	46
	Oxygen	98	95	94	89	73	59	53	49	43	36	28	21
SE	Nitrogen	98	98	98	98	92	69	43	28	22	21	21	20
	Oxygen	94	94	92	74	47	34	29	25	23	19	13	8
SEA	Nitrogen	98	97	94	78	57	45	39	36	34	32	31	30
	Oxygen	95	85	73	60	47	41	37	33	29	24	18	13
SEA-HCl	Nitrogen	97	90	70	63	58	54	51	49	48	46	44	43
	Oxygen	96	75	64	54	45	40	35	31	26	19	13	10
SEA-H ₂ SO ₄	Nitrogen	97	87	74	68	62	56	52	49	47	45	44	43
	Oxygen	96	83	69	60	50	44	39	34	28	22	15	12
SEA-H ₃ PO ₄	Nitrogen	97	93	75	65	61	57	55	54	53	51	50	47
	Oxygen	97	91	71	63	58	55	52	49	44	39	32	28
SEC-H ₃ PO ₄	Nitrogen	96	94	89	59	51	46	44	43	43	41	40	38
	Oxygen	98	91	62	53	48	46	44	41	38	34	29	23
SEC-Cl	Nitrogen	97	91	87	72	53	40	32	26	24	23	22	22
	Oxygen	96	89	75	54	41	35	31	28	25	20	15	13
SEC-HSO ₄	Nitrogen	97	96	90	72	51	43	38	34	31	30	28	27
	Oxygen	97	93	79	57	46	39	36	32	29	23	17	11
SEC-HO	Nitrogen	96	86	81	69	46	39	33	28	26	25	24	22
	Oxygen	98	81	69	54	44	39	36	33	29	24	18	17
SHI-Cl	Nitrogen	96	92	84	67	46	37	35	33	32	32	31	30
	Oxygen	97	90	68	54	45	39	34	30	26	21	16	13
SHI-HO	Nitrogen	96	84	78	64	44	37	34	33	32	31	30	29
	Oxygen	94	72	58	48	40	34	30	27	22	17	11	10
SHI-H ₂ PO ₄	Nitrogen	97	96	94	77	65	60	59	57	56	54	53	52
	Oxygen	96	93	86	72	62	58	55	52	48	43	37	34
SHI-HSO ₄	Nitrogen	95	94	84	68	56	47	42	41	39	38	37	36
	Oxygen	97	93	76	64	57	43	36	32	28	23	17	1

quaternary derivatives the DS values are greater than for amine samples. As seen from DS values of the same type of ion-exchanging group, the recycling to different cycles gave slightly different DSs for these cycles, which might be related with accessibility of the groups. The results of dynamic TG measurements are listed in Table 1.

Under nitrogen environment the most intense degradation take place around 325 °C where the thermal stability order: $SE > S = SHI - H_2PO_4^- > SEA$ decreases $H_2SO_4 > SEA - H_3PO_4 > SEA - HCl > SEA > SHI - HSO_4^-$ > SEC-Cl⁻ > SEC-H₂PO₄⁻ = SEC-HSO₄⁻ > SEC-HO⁻ = SHI-Cl⁻ > SHI-HO⁻. Under oxygen atmosphere at thermooxidation stability $S>SE>SHI-H_2PO_4^->SHI-HSO_4^->SEA-H_3PO_4>$ $SEA = SEA - H_2SO_4 > SEC - HSO_4^- > SEC - C1^- = SHI Cl^- = SEA - HCl = SEC - HO^- > SEC - H_2PO_4^- > SHI -$ HO⁻. In both lists the SHI-HO⁻ sample was the most degraded one and also SEC-HO was close to the end of both lists. On the other hand the most stable were S and SE samples.

For all the modified samples the residue formed in oxygen at certain temperature is smaller than in nitrogen. Only S has greater residue in oxygen up to 350 °C. This phenomenon, thermooxidation was observed on different polysaccharides and lignocellulosics (Šimkovic et al., 1985a; Šimkovic et al.,

1989; Šimkovic, Balog, & Csomorová, 1995; Šimkovic, & Csomorová, 1998; Šimkovic, Pastýr, Csomorová, Balog, & Micko, 1990). When we follow this difference with increasing temperature, than at certain temperature it reaches a maximum, that we could call thermooxidation maximum (TM). So in this way we could make an order of decreasing thermooxidation resistance according to the decreasing TM values at listed temperatures: S (8%/325 °C) > SEA $-H_3PO_4$ $(-3/325) > SHI-H₂PO₄^{-}(-8/275) > SHI-HSO₄^{-}(-8/275)$ > SEA-H₂SO₄ (-12/325) > SEC-HSO₄ (-15/300) > $SEC-HO^{-}$ (-15/300) > SEA-HCI (-15/250) > $SHI-CI^{-}$ $(-16/275) > SEC-Cl^{-}$ $(-18/300) > SHI-HO^-$ (-20/275) > SEA (-21/275) > SEC $-H_2PO_4^-$ (-27/275) > SE (-45/325). As seen after S the SEA-H₃PO₄ sample is the most resistant followed by SHI-H₃PO₄ with the same TM as SHI-H₂SO₄ but with 10% greater residues (Table 1). The most degraded sample with TM at 275 °C is SEC-H₂PO₄, but also SEA-HCl is considered as labile due to TM at lowest temperature (250 °C).

The first-order initial rate constants of residue formation/ charring $(k_r$'s) and gasification $(k_g$'s) in nitrogen and oxygen calculated by the linear regression method are listed in Table 2. The k_r 's are smaller than k_g 's in both environments. In oxygen the corresponding k's are smaller than in nitrogen only for S. For all the other samples the opposite is true. The

Table 2 Isothermal TG data of S and its derivatives (the values of $k_{\rm r}$ and $k_{\rm g}$ are multiplied by 1000)

Sample	Environment		Rate consta	nts (min ⁻¹)	Activation energies (kJ/mol)			
			250 (°C)	260 (°C)	270 (°C)	280 (°C)	290 (°C)	
S	Nitrogen	$k_{\rm r}$	3	9	15	39	70	195
		$k_{ m g}$	420	682	1214	1511	2017	97
	Oxygen	$k_{\rm r}$	1	2	18	35	36	230
		$k_{ m g}$	382	420	584	881	914	69
SE	Nitrogen	$k_{ m r}^{ m s}$	1	1	12	3	11	168
	8	$k_{ m g}$	6	23	76	246	761	293
	Oxygen	$k_{ m r}^{ m s}$	3	7	8	23	28	134
	76	$k_{ m g}$	421	548	687	945	1162	63
SEA	Nitrogen	$k_{ m r}$	15	42	43	103	167	140
	T (III ogen	$k_{ m g}$	324	714	746	2283	3277	142
	Oxygen	$k_{ m r}$	58	118	162	271	396	115
	Oxygen		1251	1471	1822	2156	3312	51
CEA HOL	Nitrogen	$k_{\rm g}$	132	270	625	782	1615	145
SEA-HCl	Nillogeli	$k_{\rm r}$						
	0	$k_{\rm g}$	1338	2384	5604	6203	8076	112
	Oxygen	$k_{\rm r}$	161	397	892	1431	2416	164
anaa	3.7%	$k_{ m g}$	4806	13238	21354	47067	93051	176
SEA-H ₂ SO ₄	Nitrogen	$k_{ m r}$	85	158	308	483	613	125
		$k_{ m g}$	1385	1977	3644	3859	3953	68
	Oxygen	$k_{ m r}$	179	233	266	564	734	90
		$k_{ m g}$	6186	8019	10633	12813	16438	59
SEA-H ₃ PO ₄	Nitrogen	$k_{ m r}$	20	51	149	351	797	228
		$k_{ m g}$	344	815	2013	4603	9642	206
	Oxygen	$k_{ m r}$	39	96	180	366	572	164
		$k_{ m g}$	2829	4123	8400	13943	16186	115
SEC-H ₂ PO ₄	Nitrogen	$k_{\rm r}$	6	12	49	77	202	223
	C	$k_{ m g}$	211	557	941	2070	4180	178
	Oxygen	$k_{ m r}^{ m s}$	43	108	268	353	723	167
	511/8111	k_{g}	1620	2749	6684	10173	12918	134
SEC-C1	Nitrogen	$k_{\rm r}$	22	66	71	84	104	78
	T (Tar og en	$k_{ m g}$	641	1151	1164	1544	2027	70
	Oxygen	$k_{ m r}$	120	175	177	358	749	107
	Oxygen	$k_{ m g}$	4492	5867	7630	9587	12794	63
SEC-HSO ₄	Nitrogen		8	19	41	90	187	193
	Nitrogen	$k_{\rm r}$						
	Ovvenom	$k_{\rm g}$	296 39	719	1436	1515	3486	139
	Oxygen	$k_{\rm r}$		87	146	324	513	159
	NT.	k_{g}	1785	2440	4652	8968	12371	127
SEC-HO	Nitrogen	$k_{\rm r}$	20	34	36	52	98	88
		$k_{ m g}$	288	468	766	1108	1856	112
	Oxygen	$k_{ m r}$	164	193	254	489	646	90
		$k_{ m g}$	3031	3691	4541	5205	6004	50
SHI-Cl	Nitrogen	$k_{ m r}$	24	35	65	149	262	327
		$k_{ m g}$	706	911	919	2211	3717	102
	Oxygen	$k_{ m r}$	85	169	265	487	494	113
		$k_{ m g}$	3830	7024	8573	15003	21601	103
SHI-HO ⁻	Nitrogen	$k_{ m r}$	7	15	35	146	158	212
		$k_{ m g}$	391	643	959	1541	2385	110
	Oxygen	$k_{ m r}$	386	476	555	963	907	69
		$k_{ m g}$	13527	16553	14721	27293	33697	57
SHI-H ₂ PO ₄	Nitrogen	$k_{\rm r}$	5	11	25	54	113	192
	· ·	$k_{ m g}$	138	355	946	1841	5317	219
	Oxygen	$k_{ m r}$	17	24	52	103	154	143
	- 78	$k_{ m g}$	461	860	1930	3705	5923	161
SHI-HSO ₄	Nitrogen	$k_{ m r}$	17	33	69	123	205	155
211 11004	1 11105011	$k_{ m g}$	682	1460	2985	6296	12328	178
	Oxygen		43	94	159	243	482	142
	Oxygen	k_{r}	2366	4194	6904	12232	19895	130
		$k_{ m g}$	2300	4194	0904	14434	17093	130

activation energy for residue formation on S is greater in oxidative than in inert environment, but the value for gasification is smaller and the one obtained in oxygen is smaller than the value measured in nitrogen. This confirms that more energy is needed for processes which are taking place in residue than for the gasification and also the thermooxidation is less energy consuming than thermolysis. When we put the samples into order according to the increasing k_r 's in nitrogen (SE > S > SHI-H₂PO₄⁻ > $SHI-HO^- > SEC-HO^- > SEC - HSO_4^- > SEA > SEC$ $-H_2PO_4^- > SHI-Cl^- > SHI-HSO_4^- > SEC-Cl^- > SEA H_3PO_4 > SEA-H_2SO_4 > SO-HCl$), than we can assume that in the inert environment the quaternized derivatives are more stable than weak amine samples in acid forms. The corresponding activation energies are decreasing in order: $SHI-C1^- > SEA - H_3PO_4 > SEC-H_2PO_4^- > SHI HO^- > S > SEC-H_2SO_4 > SHI-H_2PO_4^- > SE > SHI-$; $HSO_4^- > SEA - HCl > SEA > SEA - H_2SO_4 > SEC HO^- > SEC-Cl^-$. It seems that in nitrogen the $H_2PO_4^-$ H₃PO₄ samples are more stable than Cl⁻/HCl forms. According to increasing k_g 's (SE > SEA > SEC- $HO^- > SHI-Cl^- > SEC-H_2PO_4^- > SHI-H_2PO_4^- > SHI HO^- > SEC-Cl^- > S > SEC-HSO_4^- > SEA-H_3PO_4 >$ $SHI-HSO_4^- > SEA-H_2SO_4 > SEA-HCl$) the SEA-HClsample is forming residue with the greatest speed while the related activation energies are decreasing in order: $SE > SHI-H_2PO_4^- > SEA-H_3PO_4 > SHI-HSO_4^- = SEC H_2PO_4^- > SEA > SEC-HSO_4^- > SEA-HCl = SEC HO^- > SHI-HO^- > SHI-Cl^- > S > SEC-Cl^- > SEA-$ H₂SO₄. These results indicate that HCl/Cl⁻ samples are gasified in nitrogen easier than others as seen from their high k's and low E's. In oxygen the k_r 's are increasing as follows: $SE > S > SHI-H_2PO_4^- > SEC-HSO_4^- > SHI HSO_4^- > SEA > SEC-C1^- > SEA-H_3PO_4 > SEC HO^- > SHI-Cl^- > SEA-H_2SO_4 > SEC-H_2PO_4^- > SHI \mathrm{HO}^- > \mathrm{SEA} - \mathrm{HCl}$ and E_{r} 's are decreasing: $\mathrm{S} > \mathrm{SEC} H_2PO_4^- > SEA-HCl = SEA-H_2PO_4^- > SEC-HSO_4^- >$ $SHI-H_2PO_4^- > SHI-HSO_4-SE > SEA > SHI Cl^- > SEC-Cl^- > SEA-H_2SO_4 = SEC-HO^- > SHI-$ HO⁻. It shows again that after SE and S the SHI-H₂PO₄ has the smallest k_r 's, while according to E_r 's only S is more stable than SEC-H₂PO₄. The SHI-HO sample is among those which are easy-forming the residue. The k_g 's are under analogical conditions increasing (S > SE > SEA > SHI- $H_2PO_4^- > SEC-HO^- > SEC-HSO_4^- > SEC-H_2PO_4^ > SHI-HSO_4^- > SEC-Cl^- > SEA-H_3PO_4 > SHI-Cl^-$ > SEA-H₂SO₄ > SHI-HO⁻ > SEA-HCl) and E_g 's decreasing (SEA-HCl > SHI- $H_2PO_4^-$ > SEC- $H_2PO_4^-$ > $SHI-HSO_4^- > SEC-HSO_4^- > SEA-H_3PO_4 > SHI-Cl^- >$ $S > SE = SEC-C1^- > SEA-H_2SO_4 > SHI-HO^- >$ SEA > SEC-HO⁻) showing that SHI-HO⁻ sample has high $k_{\rm g}$'s and low $E_{\rm g}$. The SHI-H₂PO₄ sample proved to be again one of the most resistant. The SEA-HCl has the greatest kvalues and also the greatest $E_{\rm g}$, which indicates different mechanism of gasification in presence of acid than on quaternary samples where only ion catalysis the dehydration.

The values of k_r 's and k_g 's of S, SE, SEA, SEA–HCl, SEA–H₂SO₄ and SEA–H₃PO₄ measured before on different thermobalance are exhibiting the same trend although giving slightly different absolute values as could be expected due to different conditions used on TG and TG/MS instruments (Šimkovic, & Jakab, 2001). It seams that the SEA–H₃PO₄, SEC–H₂PO₄ and SHI–H₂PO₄ samples are the most resistant towards thermooxidation/gasification. It is hard to predict any reaction schemes before developing a suitable technique for analyzing the gases in the presence of oxygen or to develop a method for measuring of oxygen consumption under the used conditions.

4. Conclusions

According to the dynamic TG measurements of amine and ammonium derivatives in nitrogen and oxygen environment it could be concluded that the thermooxidation resistance is decreasing in order: $S > SEA-H_3PO_4 > SHI-H_2PO_4^- > SHI-HSO_4^- > SEA-H_2SO_4 > SEC-HSO_4^- > SEC-HO^- > SEA-HC1 > SHI-C1^- > SEC-C1^- > SHI-HO^- > SEA > SEC-H_2PO_4^- > SE. The isothermal experiments indicate that the <math>SEA-H_3PO_4$, $SEC-H_2PO_4^-$ and $SHI-H_2PO_4^-$ are the most resistant towards both thermolysis and thermooxidation. For gasification in presence of oxygen the $SHI-HO^-$ seems to be the most easily gasified sample (with the biggest k_g 's and smallest E_g .

Acknowledgements

This work was supported by the grant 2/7143/20 of the Scientific Grant Agency of Slovak Academy of Sciences (VEGA).

References

Horton, D., & Pardoe, W. D. (1970). Carbohydrate Research, 12, 269–272.
Shafizadeh, F., & Bradbury, A. G. W. (1979). Journal of Applied Polymer Science, 23, 1431–1442.

Šimkovic, I., Antal, M., Balog, K., Košík, Š., & Plaček, J. (1985a). *Journal of Applied Polymer Science*, 30, 4713–4721.

Šimkovic, I., Antal, M., Csomorová, K., & Micko, M. (1989). *Journal of Applied Polymer Science*, 38, 1913–1917.

Šimkovic, I., Antal, M., Mihálov, V., Königstein, J., & Micko, M. M. (1985b). Journal of Applied Polymer Science, 30, 4707–4711.

Šimkovic, I., Balog, K., & Csomorová, K. (1995). *Holzforschung*, 49, 512–516

Šimkovic, I., & Csomorová, K. (1998). Fire and Materials, 22, 149–154. Šimkovic, I., Francis, B. A., & Reeves, J. B. (1997). Journal of Analytical and Applied Pyrolysis, 43, 145–155.

Šimkovic, I., Hricovíni, M., & Sasinková, V. (2002). Carbohydrate Polymers, 47, 131–136.

Šimkovic, I., & Jakab, E. (2001). Carbohydrate Polymers, 45, 53-59.

Šimkovic, I., Laszlo, J. A., & Thompson, A. R. (1996). *Carbohydrate Polymers*, 30, 25–30.

Šimkovic, I., Pastýr, J., Csomorová, K., Balog, K., & Micko, M. M. (1990). Journal of Applied Polymer Science, 41, 1333–1337.